2,138 research outputs found

    When the path is never shortest: a reality check on shortest path biocomputation

    Full text link
    Shortest path problems are a touchstone for evaluating the computing performance and functional range of novel computing substrates. Much has been published in recent years regarding the use of biocomputers to solve minimal path problems such as route optimisation and labyrinth navigation, but their outputs are typically difficult to reproduce and somewhat abstract in nature, suggesting that both experimental design and analysis in the field require standardising. This chapter details laboratory experimental data which probe the path finding process in two single-celled protistic model organisms, Physarum polycephalum and Paramecium caudatum, comprising a shortest path problem and labyrinth navigation, respectively. The results presented illustrate several of the key difficulties that are encountered in categorising biological behaviours in the language of computing, including biological variability, non-halting operations and adverse reactions to experimental stimuli. It is concluded that neither organism examined are able to efficiently or reproducibly solve shortest path problems in the specific experimental conditions that were tested. Data presented are contextualised with biological theory and design principles for maximising the usefulness of experimental biocomputer prototypes.Comment: To appear in: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Get PDF
    Toluene was measured using both a gas chromatographic system (GC), with a flame ionization detector (FID), and a proton transfer reaction-mass spectrometer (PTR-MS) at the AIRMAP atmospheric monitoring station Thompson Farm (THF) in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including alpha- and beta-pinene, camphene, Delta(3)-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of similar to 2 and similar to 30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H(3)O(+), O(2)(+) and NO(+) in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of similar to 0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13 +/- 0.02)x-(0.008 +/- 0.003) ppbv, suggesting a small similar to 13% positive bias in the PTR-MS measurements. The bias corresponded with a similar to 0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1 sigma measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by correcting the PTR-MS measurements for contributions from monoterpene fragmentation in the PTR-MS drift tube; however, the improvement was minor (\u3c10%). Interferences in the PTRMS measurements from fragmentation of the monoterpene oxidation products pinonaldehyde, caronaldehyde and alpha-pinene oxide were also likely negligible. A relatively large and variable toluene background in the PTR-MS instrument likely drove the measurement bias; however, the precise contribution was difficult to accurately quantify and thus was not corrected for in this analysis. The results from THF suggest that toluene can be reliably quantified by PTR-MS using our operating conditions (drift tube pressure, temperature and voltage of 2.0 mbar, 45 degrees C and 600V, respectively) under the ambient compositions probed. This work extends the range of field conditions under which PTR-MS validation studies have been conducted

    Results from a set of three-dimensional numerical experiments of a hot Jupiter atmosphere

    Get PDF
    We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.Comment: 26 pages, 22 Figures. Accepted for publication in Astronomy and Astrophysic

    The prevalence of coeliac disease-associated human leukocyte antigens in South African transplant donors and recipients

    Get PDF
    Background. Coeliac disease (CD) is an autoimmune condition occurring in genetically predisposed individuals exposed to an environmental trigger. The human leukocyte antigen (HLA) haplotypes HLA-DQ2.5 and HLA-DQ8 have the strongest association with CD, and 90 - 95% of CD patients bear these haplotypes. The susceptibility of the South African (SA) population to CD has not been studied previously.Objectives. To describe the genetic propensity of the SA population to CD.Methods. The South African National Blood Service database was used to analyse the prevalence of HLA-DQ2.5 and HLA-DQ8 in potential donors and recipients of organ transplants. Self-reported ethnic group was used to estimate the prevalence among different population groups.Results. The overall prevalence of HLA-DQ2.5 and HLA-DQ8 was 19.8%. The prevalence was lower in black participants (15.9%) than in whites (28.6%). Coloured (22.0%) and Indian (17.4%) participants had an intermediate prevalence. There was no significant difference between potential transplant donors and recipients.Conclusions. The prevalence of HLA-DQ2.5 and HLA-DQ8 differed among SA study participants of different ethnicities. However, the notion that CD does not occur in black South Africans owing to lack of a genetic predisposition is incorrect

    Simplified method for the lateral, rotational, and torsional static stiffness of circular footings on a nonhomogeneous elastic half-space based on a work-equivalent framework

    Get PDF
    Although there are many methods for assessing vertical stiffness of footings on the ground, simplified solutions to evaluate lateral, rotational, and torsional static stiffness are much more limited, particularly for nonhomogeneous profiles of shear modulus with depth. This paper addresses the topic by introducing a novel “work-equivalent” framework to develop new simplified design methods for estimating the stiffnesses of footings under multiple degrees-of-freedom loading for general nonhomogeneous soils. Furthermore, this framework provides a unified basis to analyze two existing design methods that have diverging results. 3D finite element analyses were carried out to investigate the soil–footing interaction for a range of continuously varying and multilayered nonhomogeneous soils, and to validate the new design approach
    corecore